J.Franke, W. Hardle, G. Stahl – Measuring Risk in Complex Stochastic Systems
Since the seminal of Markowitz (1952) and Sharpe (1964) capital allocation within portfolios is based on the variance/covariance analysis. Even the introduction of Value-at-Risk in order to measure risk more accurately than in terms of standard deviation, did not chance the calculation of a risk contribution of single asset in the portfolio or its contributory capital as a multiple of the asset’s β with the portfolio. This approach is based on the assumption that asset returns are normally distributed. Under this assumption, the capital of a portfolio, usually defined as a quantile of the distribution of changes of the portfolio. Since the βs yield a nice decomposition of the portfolio standard deviation and exhibit the interpretation as an infinitesimal marginal risk contribution (or more mathematically as a partial derivative of the portfolio standard deviation with respect to an increase of the weight of an asset in the portfolio), these useful properties also hold for the quantie, i.e. for the capital.
Delivery Method
– After your purchase, you’ll see a View your orders link which goes to the Downloads page. Here, you can download all the files associated with your order.
– Downloads are available once your payment is confirmed, we’ll also send you a download notification email separate from any transaction notification emails you receive from IMC.sale.
– Since it is a digital copy, our suggestion is to download and save it to your hard drive. In case the link is broken for any reason, please contact us and we will resend the new download link.
– If you cannot find the download link, please don’t worry about that. We will update and notify you as soon as possible at 8:00 AM – 8:00 PM (UTC+8).
Thank You For Shopping With Us!
9 reviews for J.Franke, W. Hardle, G. Stahl – Measuring Risk in Complex Stochastic Systems
There are no reviews yet.